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Abstract: In view of the recent technological development, the pursuit of safe high-precision structural designs has been the goal
of most structural designers. To bridge the gap between the construction theories and the actual construction techniques, safety
factors are adopted for designing the strength loading of structural members. If safety factors are too conservative, the extra
building materials necessary will result in high construction cost. Thus, there has been a tendency in the construction field to derive
a precise buckling load analysis model of member in order to establish accurate safety factors. A numerical analysis model, using
modal analysis to acquire the dynamic function calculated by dynamic parameter to get the buckling load of member, is proposed
in this paper. The fixed and simple supports around the circular plate are analyzed by this proposed method. And then, the Monte
Carlo method and the normal distribution method are used for random sampling and measuring errors of numerical simulation
respectively. The analysis results indicated that this proposed method only needs to apply modal parameters of 7x7 test points to
obtain a theoretical value of buckling load. Moreover, the analysis method of inequality-distant test points produces better analysis

results than the other methods.
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INTRODUCTION

Buckling occurs when the stress loading on a
member reaches a certain critical point and the
member is in a state of neutral balance after losing
resistance to outside forces. A large amount of drifts

are generated, leaving the member in an unstable state,

Thus, buckling load is a critical factor for designers in
designing members. The amount of buckling load is
related to the size, material, and the boundary restraint
conditions of the member. Size and material are not
significant variables and easily controlled, but the
boundary restraint conditions are not easily evaluated
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accurately because connectors cannot be technically
perfected. Although reduction factor can cover up the
shortcoming, it is hard to examine if the buckling load
of the member meets the design requirement during
the construction. As a result, it is necessary to devise a
method which can analyze the buckling load of the
members and establish accurate safety factors without
having to consider the boundary condition factor.
Boundary connectors cannot be simulated, making it
hard to estimate the boundary restraint conditions of
the member or derive them from theories. Thus, in the
past, scholars usually conducted experiments based
on various static or dynamic theories, in order to ob-
tain the value of the buckling load.

Experiments using dynamic theories include that
of: (1) Lurie (1952), who conducted experiments to
obtain the relation curve between axial loading and
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the square natural frequency, and get the structural
members’ bulking load value by using linear ex-
trapolation at the point of frequency = 0; (2) Sweet
and Genin (1971), Sweet et al.(1976; 1977), who used
the natural frequency obtained from the results of
motion experiments to estimate the buckling load of
structural members; (3) Segall and Baruch (1980),
who derived the buckling load of flexible poles by
conducting motion experiments in conjunction with
integral pole equation; (4) Segall and Springer (1986),
who used integral equation and motion parameters to
get the buckling load value of model members; (5) Go
et al.(1997), who created a parameter based model to
analyze the buckling load of the model members.
Richard and Faires (1989) proposed the experiment’s
main static theory in which the slope of the W/P vs W
curve is the buckling load value of the structural
members (P being the measured structural member
loading, 7 the deformation after buckling).

A dynamic analysis model is proposed to acquire
buckling load of plate. We used the dynamic meas-
ured data from selected test points and by modal
analysis got the modal parameters-mode shape and
frequency; and then, derived a flexible matrix with
the above model parameters. Force analysis was used
to get the flexible matrix of equivalent force and the
characteristic equation for determining the buckling
load of the member. Under the equivalence, the
buckling deformation function of the member was
derived from the deformation tested at the test points
and simulated by Lagrange’s Interpolation Equations.
In this paper, we took the circular model member of
ideal margins and fixed restraints on each side as an
example. First, we used the given frequency and the
corresponding mode shape to conduct the verification
of the analysis model and then discussed the number
and location of the test points and the mode shapes
composing a linear isolated equation with the 1st, 2nd,
3rd, 4th, 5th, ... values extracted from the vibration
equation; and also discussed the impact of measured
deviation caused by outside factors on buckling load.
Monte Carlo Method was used to-generate random
scatter to simulate the values of measured deviations.
Finally, we modeled the elements of the circular
model member with simple restraint on each side
based on the results of the above analysis, and used
finite element analysis method to acquire modal pa-
rameters. Then, we verified the dynamic analysis

model with the modal parameters obtained from
measured data. The proposed analysis model is ap-
plicable to all kinds of loading and boundary condi-
tions.

ANALYSIS METHOD

Simulation function of buckling shape

Assume that the deformation function of the
plate after buckling is W/(r,0); then, select test points
along the vertical direction of plate where lateral
displacement is D;; (i, j=1, 2, ..., n). Using Lagrange’s '
Interpolation Function to tie in with lateral dis-
placement Dy to represent the deformation function of
the plate after buckling WA(r,6) (Dym, 1974) shown as
follows:

W(0=> Y LD, 0

i=1 j=1

Where, L, = L,(r)x L,(6)
(r=n)(r=—rXr—t,)(r-r)
=) =)= 1) (5= 1)
L (0-8)(0-6,X6-6,)(0-06,)
@, —6,)-(6,~ 0, )0, ~6,.,) (6, - 6,)

is Lagrange’s interpolation function and Dj; is the test
point (i, ), lateral displacement.

Energy equivalence

Assuming a homogeneous and isotropic plate,
with radius a. When the plate is subjected to external
forces /V,., Ngg and shear force V,4, the energy equa-
tion can be expressed as follows (Timoshenko and
Gere, 1997):
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From the concept of the energy method, the axial
and shear forces can be transformed as action force
acting on test points. Then substitute N,,=Nf(»,6);
No=Nfi(r,0); N.&=Nfs(r,0) into Eq.(2). The equiva-
lent force matrix [F], can be acquired through

Castigliano’s theorem, as follows:

oUu
[F]nle = W = N[B]nzxnz [1)]"2><1

n*x1

3)
Where: .
[Bl..= I{A[L,]IZXI[L,]W +;}J;([Lr1;x1[L9]W

+[L9 ]:le [L" ]lxnz ) + ;li—ﬁ [L0 ]Tz
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[L,], }rdrd&,

and [D] is the displacement matrix.

Buckling analysis

Considering the relation between action [F] and
displacement [D] in the system of equivalent condi-
tion. Then use the force method to analyze the fol-
lowing expression:

[D]={G][F] 4)

Where, [G] is flexible matrix.

G(i, j) means that applying one unit loading at j
point, induced the deflection at i point. Substituting
[F] in Eq.(3) into Eq.(4) to get the following expres-
sion;

[DI-[G][FI=NG][B][D] )
ALDI={G][B][D] ©)

Where, A =1/N is buckling load.

Solving the Eq.(6) to obtain the characteristic
solution. The reciprocal of the characteristic solution
~ maximum value is the buckling load.

Ncr = l/ﬂ’max (7)

The theoretical model shows that [B] and [G] are
two factors affecting the analysis accuracy of buck-
ling load. When the test point has been determined,
we use dynamic measurement and modal analysis to
get the modal shape ¢ and frequency @ of the plate to
analyze and study the flexible matrix [G] with regard
to [B] matrix, and their relations with test positions
and number of test points.

Flexible matrix
The free vibration dynamic equation of circular
plate is shown as follows (Meirovitch, 1967):

o’w
~-DV'w=p—- 8
ER’ . . -
where, D=————— is the deflection rigid-
121 -v7)

2 2

ity; V* =é—2—+l£+—%—a—2 is harmonic differen-
or~ ror r°00

tial operator and V2V?=V* is biharmonic differential
operator.

Assuming deformation function is w(r,0,f), and
after using variable separation method to solve Eq.(8),
the deformation function can be expressed as follows:

w(,0.0=YoOL0 O

where, @7, 0) is the ith Modal Shape.
Then substitute Eq.(9) into Eq.(8) to derive the
following expression:

4 ) T"
Q.V i =_;=mi2 (10)
P9 T

where, @; is the natural frequency for the ith modal
shape and T; is the time function of free vibration.

T +@’T, =0

1

(11)

DV, - pa’p, =0 (12)

The forced vibration dynamic equation of cir-
cular plate is shown as follows (Meirovitch, 1967):
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DViw+ p%} = £(r,0,) (13)

where, f{r,6) is the external force applied on the
circular plate.

Assuming the deformation function is wy (r,6,7)
and given as:

w,(r,e,t){«»i(r,i)w,-(t) (14)

where, wi(¥) is time function of forced vibration.
Eq.(14) can be substituted into Eq.(13), then,

multiplied by ¢,(r,6) and integrated over the area of

the circular plate to get the following equation:

Yv [[op,prdrdo+ Yy, [[(DV'0)prdrdo

i=l A i=1 A

i=

= || f(r.0,t)p rdrd0 15)
fiscom

Using the characteristics of Modal Orthogonal,
Eq.(16) can be rearranged as follows:

[Je.p,prdrdo = Mg, (16)
A

e
f J and M, = _U(of prdrd@ is gen-
i=j ’

0

where, 0, ={
1

eralized mass.
Assuming the external force f{r,6,¢) as a period
centralized force applied at the test point.
S, 66=&r—5) X 6-m)xsin(C2r) a7

where, &r—¢) is the Dirac Delta Function.

The properties of Dirac Delta Function are
shown as follows:

0 ,r—§|)£
L e

0 &2a, £<0

Ioa(r_‘f)dr:{l a>E>0

Then, Eq.(17) can be integrated to get the fol-
lowing equation:
£,r,0,0 = [[8( - )80 - n)sin(Qe)rdrd6
A4

= &£sin(QYr) (18)

Substitution of Egs.(12), (16) and (18) into
Eq.(15), yields the following equation.

ij/j + Mjw2'//j =9, (&,m)sin(Qx) (19)

Substitution of initial conditions y(0)=y;(0)=0
into Eq.(19) and use of Inverse Laplace Transform
yield w(z) as:

(//(t) _ l"¢j (fa 77)5 Z |:sm(Qt) _ gsin(a)jt):l (20)
)

2
@,

Substitute Eq.(20) into Eq.(14) to obtain w(r, 6,1
shown as follows:
w,(r,0,0) = 0,(r,0)w, ()
i=1

_rép,(r,0)p, (5,77){
M jwf. {1 - (Q:ﬂ
@,

If Q—0, the external force approaches static
load and the influence function can be shown as fol-
lows:

sin(€2) — a)g sin(a),.t):( 21

J

. ,0,0) & o,(r,0)ep,,
G(r,0,&,1) = },‘_‘}3 W(;(t) ) _ g{ o,(r A;fl;)l(zf nr

_rp,(r.0)0,(&,m) {

et -(8)

where, Parameter G(r,0,&,1) represents the induced
deflection at test point (r, ), one unit load is applied at
the test point (&, 77), which is the flexible matrix.

Use of the three-point method of Simpson’s rule

sin(Qf) — wgsin(a)it)]

J

22)
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yields the following expression for generalized mass
M.

M, = -U(ofprdrde = (23)
A4

The used constant values of Eq.(23) are:

—

For =1, m
For i=odd; #1, m
For i=even
For j=1,n
For j=odd; #1, n
For j=even
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VERIFICATION OF THEORETICAL MODEL

Error of simulation

The measured error of numerical analysis test is
used in the Monte Carlo method for sampling random
variable, following the normal distribution model.
The obtained error of simulation err; is multiplied by
dynamic parameters—natural frequency o; and modal
shape @(r,6) and then substituted into the theoretical
model before proceeding with the numerical analysis.
The buckling load of circular plate with error of
simulation can be acquired. The natural frequency
and modal shape with error of simulation are as fol-
lows:

err __ err
o =, xerr,, @

: =@, xerr, (24)
where, erry and err, are simulation errors.

The normal random variable is produced through
the uniform distribution random variation on the cen-
tral limit theorem. The distribution situation is 99.7%
of the weight factor plus/minus 100%. The standard
deviation is 1/3. This diagram is shown in Fig.1. The
normal random variable of RAN, is shown as:

where, n is the number of the selected distribution

random variables. There are 1000 points for this paper;

4 is the mean value of normal distribution and o is the
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Fig.1 A diagram of standard normal distribution

standard deviation of normal distribution.

RAN =X, /M (26)
where, RAN,, is the uniform random variable between
0 and 1, X, is the random variable and M is the unit
length for sampling.

Influence parameters for buckling load of circular
plate

In order to study the influence of position of se-
lected test point, number of selected points and
simulation of modal shape on the results of analysis of
the buckling load of circular plate, using the given
theoretical solution of buckling load, the constrain
boundary conditions of a circular plate with uniform
axial load NV,,, applied on it, as an example. The ma-
terial properties of the circular plate are given in Ta-
ble 1.

Table 1 Material properties of circular plate

Deflected r1g1d1ty D Area of mass p Radius a
(kg-cm ) (kg/cm ) (cm)

1 1 1

The feasibility study of this proposed theoretical
analysis model of buckling loads used the given
theoretical formula of natural frequency and modal
shape where the boundary conditions of circular plate
are fixed. The analysis results are shown in Tables 2
and 3. Table 2 is composed of five modal shapes for
analysis of the simulation effects of modal shapes.
The analysis results indicated that the comparison of
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analysis solution and theoretical solution of buckling
load had barely 1.5% error number of test points 7x7
using equidistant test point and not equidistant test
point. Table 3 is the simulation results of 7x7 test
points with equidistant test point. The analysis results
show that more accurate buckling load of circular
plate can be acquired by using simulation model,
which buckling load is obtained by the second mode.
The positions of test points of equidistant test point
and inequality-distant test point are shown in Tables 4,
Sand 6.

The theoretical formulas of natural frequency
and modal shape of circular plate with fixed support

137

are expressed as Egs.(27) and (28) respectively.

2
o, = (% +n)? —:{—2 \/g forlarge n  (27)

where, a is the radius and m, =1, 2, ...

e [Im(ﬂm,,avm(ﬂmnr) } cos(m)
o (Bn @ (B
W oy = s [’"’ Eon® L) ] sin(m6)
~ By, (BT
mn=1,2.... ' (28)

Table 2 The buckling load of fixed support of circular plate bearing uniform unit axial load W,.=1)

Test point arrangement No. of test points Analysis solution ~ Theoretical solution Error ratio
Equidistant test point 5x5 35.270 14.684 +140.19 %
7x7 14.895 14.684 +1.4376 %
9x9 14.872 14.684 +1.1127 %
Not equidistant test point 1 5%5 18.021 14.684 +22.725 %
7x7 14.879 14.684 +1.3279 %
9x9 14.838 14.684 +1.0488 %
Not equidistant test point 2 5x5 17.898 14.684 +21.888 %
Tx7 14.869 14.684 +1.2599 %
9%9 14.842 14.684 +1.0760 %

Table 3 The influence of number of modes shape for buckling load
No. of test points No. of modal shape Analytical solution Theoretical solution Error ratio
The first mode 15.196 14.684 3.483 %
The second mode 14911 14.684 1.548 %
7x7 The third mode 14911 14.684 1.544 %
The forth mode 14.902 14.684 1.485 %
The fifth mode 14.895 14.684 1438 %

Table 4 Coordinates positions of equidistant test points of circular plate

No. of test points Aspect Position
55 r direction 0,a/d, al2,3a/4, a
A direction 0, n/2, &, 3n/2, 27
7 direction 0, a/6, a/3, a/2, 2a/3, 5a/6, a
T @ direction 0, /3, 2n/3, m, 4n/3, 57/3, 2n
959 r direction 0, a/8, a/4, 3a/8, a/2, 5a/8, 3a/4, 1a/8, a
@ direction 0, /4, n/2, 3n/4, &, S7/4, 3n/2, Tr/4, 2n

Table 5 Coordinates positions of not equally test point 1 of circular plate

No. of test points Aspect Position
55 7 direction 0, a/5, a/2,4a/5, a
@ direction 0,n/2,m,3n/2,2n
7 direction 0, a/8, a4, al2, 3a/4, Ta/8, a
el 6 direction 0, n/3, 2/3, m, 4n/3, 57/3, 2n
90  direction 0, a/10, a/5, 3a/10, a/2, 7a/10, 4a/5, 9a/10, a

@ direction

0, n/4, n/2, 3n/4, , 57/4, 31/2, Tn/4, 2n
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Then, the circular plate with simple support is
used as an example. According to the analysis results
of Table 2, the 7x7 equidistant and not equidistant test
points of the finite element method were selected to
calculate modal parameters of natural frequency and
modal shape. The theoretical buckling load with
simple support of circular plate bearing uniform unit
axial load N, and composed of five modal shapes,
was derived and used for simulating the analysis
modal shape. The analysis solutions were close to the
theoretical solutions, shown in Table 7. These results
indicate that the analysis method employing vibration
experiment conjunction with modal analysis method
to obtain the buckling load of a structural member is
certainly practicable.

OUTCOME OF ERROR ANALYSIS

The error produced in the experimental meas-
urement and having bearing on the theoretical analysis
model for obtaining the buckling load of structural
members was investigated using 7x7 equidistant test
points with cyclic fixed support of circular plate as an
example. As regards five sets with maximum meas-
uring error of 2%, 4%, 6%, 8% and 10%, it is note-
worthy that one thousand simulations experiments
were set up for each of the simulations. The analysis
results are shown in Tables 8 and 9. These analysis
results revealed that the error scope of dynamic
measuring theoretical model of buckling load ac-
corded with the increase of the maximum measuring

€1Tor.

CONCLUSION

The proposed theoretical analysis method using
dynamic measurement to acquire the buckling load of
the structural member is truly feasible. The advan-
tages of this proposed analysis model are: (1) it is not
constrained by the boundary conditions; (2) there is
no need to apply axial load; (3) there is no need to
know the detailed material properties. Only the modal
parameters—natural frequency and mode shape are
required by this analysis model to figure out the
buckling load.

Take a circular plate using fixed cyclic support
as an example for using this proposed analysis model
to analyze its buckling load with equidistant and not
equidistant test points. The analysis results revealed
that this proposed method only needs to apply the
modal parameters of 7x7 test points for acquiring the
theoretical approximate values of buckling load.
Moreover, the analysis method using not equidistant
test points produces better analysis results, mainly
because that the test points of this method gather
around the inflection point of the deformation curve.

The results of error simulation experiment indi-
cated (1) the error range of the buckling load enlarges
with the increase of the maximum measured error; (2)
in order to obtain more exact analysis solution of the
buckling load with minimum error, doing the calcu-
lation several times and getting the mean value of
them is suggested.

Table 6 Coordinates positions of not equally test point 2 of circular plate

No. of test points Aspect Position
r direction 0, a/5, 2a/5, 7a/10, a
3x3 @ direction 0, n/2, m, 3n/2, 21
r direction 0, a/8, a/4, 3a/8, 7al12, 19a/24, a
7 6 direction 0, /3, 2m/3, m, 43, S/3, 2n
9x0 r direction 0, a/10, a/5, 3a/10, 2a/5, 3a/5, 4a/5, 9a/10, a

O direction

0, n/4, /2, 3n/4, &, 57/4, 3n/2, Tr/4, 21

Table 7 The buckling load with simple support of circular plate bearing uniform unit axial lead (V,~1)

No. of test points Style of test point Analytical solution Theoretical solution Error ratio
. Equidistant test point 4.263 4.204 1.483%
X
Not equidistant point 4.248 4.204 1.047%
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Table 8 The theoretical buckling load influenced by 2%, 4% and 6% maximum measuring error
2% maximum measuring error 4% maximum measuring error 6% maximum measuring error
Err((>:@ratlo Times Err(& r)atlo Times Errc()(;) I;tlo Times Errc()or/gl;ttlo Times Errocr/0 r)atlo Times Errc&) r)atlo Times
~0.115 0 -0.225 0 0.015 47 -0.365 0 -0.125 30 0.115 8
-0.105 1 -0.215 2 0.025 34 —-0.355 1 -0.115 25 0.125 5
-0.095 3 -0.205 4 0.035 29 —-0.345 0 -0.105 28 0.135 5
~0.085 13 -0.195 5 0.045 30 -0.335 1 -0.095 30 0.145 4
-0.075 25 —-0.185 14 0.055 22 -0.325 0 —-0.085 32 0.155 2
—-0.065 38 -0.175 18 0.065 18 -0.315 3 -0.075 26 0.165 3
-0.055 63 -0.165 23 0.075 19 -0.305 12 ~0.065 41 0.175 1
-~0.045 59 -0.155 39 0.085 12 —-0.295 7 -0.055 36 0.185 0
-0.035 74 -0.145 29 0.095 17 -0.285 11 —0.045 31 0.195 1
-0.025 74 -0.135 31 0.105 8 -0.275 19 -0.035 38 0.205 0
-0.015 92 -0.125 35 0.115 4 -0.265 23 -0.025 35 0.215 1
-0.005 99 -0.115 31 0.125 4 -0.255 25 -0.015 27 0.225 0
0.005 96 -0.105 28 0.135 3 —-0.245 22 -0.005 28
0.015 113 -0.095 44 0.145 1 -0.235 21 0.005 30
0.025 74 -0.085 29 0.155 1 -0.225 18 0.015 28
0.035 62 -0.075 35 0.165 0 -0.215 22 0.025 20
0.045 46 -0.065 39 0.175 1 -0.205 30 0.035 19
0.055 39 —-0.055 42 0.185 0 -0.195 26 0.045 16
0.065 13 -0.045 58 —-0.185 19 0.055 20
0.075 7 -0.035 38 -0.175 24 0.065 14
0.085 5 -0.025 50 -0.165 22 0.075 8
0.095 2 -0.015 46 -0.155 20 0.085 13
0.105 2 —0.005 61 -0.145 21 0.095 12
0.115 0 0.005 49 —-0.135 27 0.105 9
Error=(analysis results—theoretical solution)/theoretical solution, 0.105=0.11~0.10
Table 9 The theoretical buckling load influenced by 8% and 10% the maximum measuring error
8% maximum measuring error 10% maximum measuring error
Error ratio Times Error ratio Times Error ratio Times Error ratio Times Error ratio Times Error ratio Times
(%) (%) (%) (%) (%) (%)
-0.485 0 -0.205 19 0.075 5 —-0.585 0 -0.305 15 -0.025 16
~0.475 1 -0.195 20 0.085 5 -0.575 1 -0.295 13 -0.015 19
—0.465 1 -0.185 29 0.095 7 -0.565 1 -0.285 13 -0.005 14
—0.455 0 -0.175 17 0.105 5 -0.555 1 -0.275 23 0.005 13
—-0.445 1 -0.165 21 0.115 9 —-0.545 0 -0.265 16 0.015 6
-0.435 2 —0.155 26 0.125 3 -0.535 3 -0.255 15 0.025 9
-0.425 5 —-0.145 24 0.135 4 -0.525 5 -0.245 19 0.035 9
-0.415 5 -0.135 19 0.145 3 —-0.515 2 -0.235 28 0.045 8
-0.405 5 -0.125 28 0.155 4 -0.505 4 -0.225 13 0.055 5
-0.395 9 —-0.115 24 0.165 3 -0.495 6 -0.215 20 0.065 5
-0.385 4 ~0.105 30 0.175 2 -0.485 4 -0.205 25 0.075 5
-0.375 18 -0.095 28 0.185 1 -0.475 15 -0.195 19 0.085 4
-0.365 14 —-0.085 28 0.195 2 —-0.465 12 -0.185 23 0.095 3
-0.355 20 -0.075 23 0.205 0 -0.455 6 ~0.175 20 0.105 3
~0.345 16 —-0.065 26 0215 1 —0.445 14 -0.165 24 0.115 4
-0.335 21 —-0.055 29 0.225 0 —-0.435 12 -0.155 21 0.125 6
-0.325 17 -0.045 21 0.235 1 -0.425 19 -0.145 21 0.135 2
-0.315 25 -0.035 22 0.245 1 -0.415 17 -0.135 23 0.145 4
—0.305 13 —-0.025 19 0.255 0 —-0.405 16 —-0.125 28 0.155 1
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—-0.295 21 -0.015 29
-0.285 18 —-0.005 18
-0.275 19 0.005 16
—0.265 26 0.015 20
—0.255 18 0.025 11
-0.245 16 0.035 13
—-0.235 14 0.045 12
-0.225 16 0.055 16
—0.215 20 0.065 11

-0.395 24 —0.115 21 0.165 2
-0.385 18 —-0.105 25 0.175 3
-0.375 10 —-0.095 25 0.185 2
-0.365 14 —0.085 16 0.195 2
—-0.355 17 —-0.075 17 0.205 2
~-0.345 18 —-0.065 21 0.215 1
-0.335 20 —0.055 17 0.225 1
-0.325 18 —0.045 16 0.235 1
-0.315 20 —0.035 15 0.245 1

Error=(analysis results—theoretical solution)/theoretical solution, 0.105=0.11~0.10
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